
</>

IoT Device Observability Checklist 

Software Build Capabilities

Requirement Details Risks

Unique 

Software Versions

Each software build needs a unique identifier to 
differentiate it from other builds. Ideally, this 
version will follow a standard format (such as 
Semantic Versioning).

You cannot correlate information in

device logs, crash dumps, and debugger

output with a specific version of software,

making it difficult-to-impossible to properly 
interpret debug information. 



You also have no idea where to start your

investigation, since you have no idea what

changes are present on the device

Store and Index 

Software Build 

Artifacts

Multiple software builds will be used in the field at 
any given time. Because function and variable 
address locations will change from one build to 
another, you must be able to access build artifacts 
for all versioned builds to debug them 
appropriately.

Debugging without the debug symbols or map file 
for a given build means that you cannot properly 
decode addresses into functions, variables, and 
specific lines of code. 



Without a foolproof system in place for storing 
and indexing artifacts, these files can go missing 
or be mislabeled.

Signed 

Firmware Upgrade 
Capabilities 

- Select Smart Home platforms require firmware 
updates that are signed. If not implemented, the 
risk is having the certification revoked. 

Device-Side Capabilities

Requirement Details Risks

Debug Log Enables developers to write strings and

values in a human-readable format that can be 
read back later to find error messages or recreate 
a sequence of events that occurred on the device. 

Debugging sealed or production units with a 
debugger is often difficult or impossible. Devices 
that are unable to be retrieved (e.g., they are in 
another country) are impossible to debug in a 
systematic way without an RMA process. 

www.embeddedartistry.com www.memfault.com 
1



Requirement Details Risks

Reset Reason

Detection

Many processors have a status register that 
indicates why the system (re)booted. The system 
should also write the cause for a manual reboot to 
a known, reserved memory location.



On boot, this information can be read, logged, and 
used to determine whether specific fallback 
behaviors will be executed (e.g., boot into a fail-
safe build when an infinite processor fault loop is 
detected).

It becomes difficult-to-impossible to detect the 
reason why the system resets due to abnormal 
causes (e.g., watchdog timeout, brownout) and 
whether your device is stuck in an infinite reboot 
loop. 

On-Device

Crash Dumps

When an assertion or processor fault occurs, the 
software can automatically collect, display, and 
store commonly collected debug information: 
software version, values of local variables, register 
values, a call stack backtrace, function inputs, and 
contents of the internal log buffer (if used). 
Automating this process improves the speed and 
ease with which developers can debug issues and 
enables them to debug assertions and faults 
without a debugger physically attached to the 
device.

Faults and assertions that occur in the field cannot 
be easily debugged by developers due to lack of 
context and information. Reproducing the issue 
with a debugger attached is likely the only 
recourse, and this significantly lengthens the 
debugging process by days or weeks.

Customizable 

Device Metrics

Development teams want to track

battery life, power consumption,

memory usage and more. Product

teams and executives want insight

into how often features are where

engineering investments should be

made.



The device needs a way to log this

information for future collection and

analysis.

Without device metrics, development teams could 
introduce performance, power, or stability 
regressions into firmware upgrades without 
knowing. 



Without metrics on usage, the company will have 
little insight into how devices are used by 
customers, making it difficult to assess the value 
of past and future product investments.

Persistent Storage Key debugging information should be saved to 
persistent storage (e.g., SD card, flash) so that 
information can be recovered even if power is lost. 



When RMA units are received, critical debugging 
information will persist on the device.

The device will only be able to report information 
that occurred since the most recent boot-up / 
power sequence. 



Devices with limited RAM risk having older-yet-
still-valuable debug information overwritten 
before it can be reported.

Debugging Infrastructure

Requirement Details Risks

Debug Log The raw addresses from crash dumps

(e.g., 0x8000ABCD) need to be

symbolicated into human-readable

variable/function names (e.g.,

main.c::325) using the debug symbols

or map file.

Every time a developer looks at a crash

log, they must manually convert the

addresses to function/variable names and

offsets within functions.



The tedium of this process means that

crash logs will not be used by the

development team for debugging except

for the direst circumstances.

www.embeddedartistry.com www.memfault.com 
2



Requirement Details Risks

Automatic 

Issue Detection

Crash dumps are positive indications of problems 
with the software. Software automation can be 
used to convert collected crash dumps (and other 
error scenarios) to issue reports. Developers can 
be notified immediately when a new issue is 
detected. 

Developers must manually review logs and crash 
dumps and file tickets for new issues. Because this 
process is both manual and time-consuming, it will 
cause a delay between when a problem is 
introduced and when it is noticed by the team.

Remote Monitoring and Management

Requirement Details Risks

Device Data Collection Devices must be able to send information to the 
centralized monitoring system, including reset 
reason, crash dumps, debug logs, and device 
metrics. 



Once in the monitoring system, data can be 
aggregated and further investigations can be 
made. 

Without access to the rich array of information 
provided by devices, fleet monitoring is 
impossible. 



Rather than detecting issues automatically during 
a firmware update rollout, the first signs of trouble 
will be customer support calls and angry tweets. 
By then, it’s too late.

Issue Alerting Remote monitoring software should observe 
debug information, check-ins, and device metrics. 
In addition to de-duplicating and filing issues 
when crash dumps are received, the system 
should automatically report issues when certain 
conditions are met (e.g., a device doesn’t check in 
within a certain period of time after an update, a 
device’s power level drops below a specific 
threshold).

Developers must spend time manually monitoring 
incoming device data for problems. Manual 
monitoring will involve delays, and potentially 
important problems will not be caught as early as 
they could have with automatic detection.

View of 

Device-Level Metrics 
Over Time 

Device metrics should be collected into a view 
that can show how the metrics for a single device 
change over time. This provides deeper insight 
into how a single device is performing and enables 
correlations between metrics (e.g., observing that 
a large power drop correlates with a spike in CPU 
usage). This view is critical for customer support 
teams. 

Factors leading to the degradation of a device’s 
performance over time may not be noticed, 
increasing debugging difficulty. It also increases 
the difficulty in providing preventative 
maintenance and support.

View of 

Fleet-Level Metrics Over 
Time 

Fleet-wide parametric data metrics can be 
aggregated so that your team can gain insight into 
the total population of devices. With this view, 
your team can observe trends and spot 
regressions of key metrics after updates, between 
software versions, and in relation to external 
factors (e.g., mobile phone or gateway updates).

Without fleet-wide metrics, your team will 
primarily be looking only at problematic devices 
(i.e., those that trigger issue alerts) or noisy 
customers.

Tagging of Devices You should be able to group specific devices 
together in a “cohort”, such as “development 
devices”, “beta testers”, and “standard customers”. 
You should be able to filter devices based on their 
cohort when viewing fleet-level metrics and 
performing updates.

Without the ability to put devices into cohorts, it 
becomes difficult to separate internal 
development devices, beta test devices, and 
standard customer devices from one another, 
impacting our analysis of fleet-level metrics and 
making it difficult to control which devices receive 
which software versions.

www.embeddedartistry.com www.memfault.com 
3


